RNA-seq to study HIV Infection in cells

Jason Laird Bioinformatics Scientist Feb 2022

Research Technology Team

Delilah Maloney High Performance Computing Specialist

Tom Phimmasen Senior Data Consultant

Kyle Monahan Senior Data Science Specialist

Patrick Florance Director, Academic Data Services

Shawn Doughty Manager, Research Computing

Jake Perl Digital Humanities NLP Specialist

Jason Laird Bioinformatics Scientist

Carolyn Talmadge Senior GIS Specialist

Chris Barnett Senior Geospatial Analyst

Uku-Kaspar Uustalu Data Science Specialist

- Consultation on Projects and Grants
- High Performance Compute Cluster
- ✓ Workshops

https://it.tufts.edu/research-technology

DNA and RNA in a cell

Two common analyses

DNA Sequencing 🔨

- Fixed number of copies of a gene per cell
- Analysis goal: Variant calling and interpretation

 Number of copies of a gene transcript per cell depends on gene expression

- Analysis goal:
 - Bulk : Differential expression

RNA Sequencing

• Single cell : Quantify different cell populations

Today we will cover RNA sequencing

RNA Sequencing

- Number of copies of a gene transcript per cell depends on gene expression
- Analysis goal:
 - Bulk : Differential expression
 - Single cell : Quantify different cell populations

"Bulk" RNA seq workflow

Library prep and sequencing

Bioinformatics

Good resource: Griffiths et al Plos Comp Bio 2015

Ribosomal RNA and Messenger RNA

- Messenger RNA (mRNA) is translated into protein
- Ribosomal RNA (rRNA) is used to construct the ribosome which translates mRNA into protein

https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393/

RNA seq library prep and sequencing

• Select for RNA with Poly A tails

•

•

٠

RNA seq library prep and sequencing

- Random priming to produce fragments and reverse transcription
- Double stranded cDNA synthesis
- Sequencing adapter ligation
- To determine the read sequence:
 - Add fluorescently labelled nucleotides
 - Each time they attach to a base they emit a colored light signal
 - That signal is used to figure out which base is where in the sequence

Resources: <u>Illumina Sequencing by Synthesis</u> <u>Griffiths et al Plos Comp Bio 2015</u>

RNA seq bioinformatics

Goal of Differential Expression

"How can we detect genes for which the counts of reads change between conditions **more systematically** than as expected by chance"

Oshlack et al. 2010. From RNA-seq reads to differential expression results. Genome Biology 2010, 11:220

Our dataset

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4⁺ T Cell Line

Stewart T. Chang, Pavel Sova, Xinxia Peng, Jeffrey Weiss, G. Lynn Law, Robert E. Palermo, Michael G. Katze

https://www.ncbi.nlm.nih.gov/pubmed/21933919

HIV lifecycle

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

HIV lifecycle

HIV infection in a human host

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

The study question

What changes take place in the first 12-24 hours of HIV infection in terms of gene expression of host cell and viral replication levels?

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

Death

Opportunistic

Diseases

Constitutional

Symptoms

8

7

6

9 10 11

10

HIV RNA Copies per ml Plasma

104

103

 10^{2}

Study findings

Using RNAseq, authors demonstrate:

- 20% of reads mapped to HIV at 12 hr, 40% at 24hr
- Downregulation of T cell differentiation genes at 12hr
- 'Large-scale disruptions to host transcription' at 24hr

Bulk vs Single Cell RNA Sequencing

https://www.10xgenomics.com/blog/single-cell-rna-seq-an-introductory-overview-and-tools-for-getting-started

10x single cell technology

https://github.com/hbctraining/scRNA-seq

scRNA cell subsets in PBMC

https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html

Bulk RNAseq for Differential Expression is OK!

Compare relative gene expression between conditions

https://www.10xgenomics.com/blog/single-cell-rna-seq-an-introductory-overview-and-tools-for-getting-started

Our (bulk) RNAseq Workflow

Quality control on Raw Reads

Raw reads in Fastq format

@SRR098401.109756285 GACTCACGTAACTTTAAACTCTAACAGAAATATACTA...

CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD...

+

- 1. Sequence identifier
- 2. Sequence
- 3. + (optionally lists the sequence identifier again)
- 4. Quality string

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

Quality encoding: !"#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI | | | | Quality score: 0.....10.....20.....30.....40

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Back to our read:

@SRR098401.109756285 GACTCACGTAACTTTAAACTCTAACAGAAATATACTA... + CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD... $C \rightarrow Q = 34 \rightarrow Probability < 1/1000 of an error$

https://www.illumina.com/science/education/sequencing-quality-scores.html

Raw read quality control

Fastq File

...

Metrics

- Sequence Quality
- GC content

FastQC Tool

- Per base sequence content
- Adapters in Sequence

FastQC Results

- Sequence Quality
 - Ensure quality scores fall mostly within green bin
- GC content •
 - Ensure normal distribution (bell curve shape) otherwise could indicate contaminant/overrepresented sequence
- Per base sequence content ٠
 - Random Priming will make the first 12 bases look off, but ensure that pattern is not seen throughout read
- Adapters in Sequence
 - Check for adapter presence

FastQC -> MultiQC

Should view all samples at once to notice abnormalities for our dataset.

40 30 % Sequences 20 10 0 55 50 60 45 40 Position in read (bp) Created with MultiQC

FastQC: Adapter Content

We'll use a tool called "Trim Galore!" to trim adapters and remove low quality bases/reads.

Workflow

Read Alignment

- RNAseq data originates from spliced mRNA (no introns)
- When aligning to the genome, our aligner must find a spliced alignment for reads
- We use a tool called STAR (Spliced Transcripts Alignment to a Reference) that has a exon-aware mapping algorithm.

Sequence Alignment Map (SAM)

@HD V	QHD VN:1.5 SO:coordinate								Header			
QSU S	SN:re	E LN	:45									3001011
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACTG	*		
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*		
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:ref,29,-,6H5M,17,0;	Alignment
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*		section
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC	*	SA:Z:ref,9,+,5S6M,30,1;	
r001	147	ref	37	30	9M	=	7	-39	CAGCGGCAT	*	NM:i:1	

CIGAR: summary of alignment, e.g. match, gap, insertion, deletion Mapping Quality

Position

Ref Sequence name

Flag: indicates alignment information e.g. paired, aligned, etc https://broadinstitute.github.io/picard/explain-flags.html

Read ID

Sequence Alignment Map (SAM)

www.samformat.info

Genome Annotation Standards

- STAR can use an annotation file gives the location and structure of genes in order to improve alignment in known splice junctions
- Annotation is dynamic and there are at least three major sources of annotation
- The intersection among RefGene, UCSC, and Ensembl annotations shows high overlap. RefGene has the fewest unique genes, while more than 50% of genes in Ensembl are unique
- Be consistent with your choice of annotation source!

Gene Annotation Format (GTF)

In order to count genes, we need to know where they are located in the reference sequence STAR uses a Gene Transfer Format (GTF) file for gene annotation

							Fran	ne
						Stra	and	
Chrom	Source	Feature type	Start	Stop	(Scc	ore)		Attribute
chr5	hg38_refGene	exon	138465492	138466068		+		gene_id "EGR1";
chr5	hg38_refGene	CDS	138465762	138466068		+	0	gene_id "EGR1";
chr5	hg38_refGene	start_codon	138465762	138465764		+		gene_id "EGR1";
chr5	hg38_refGene	CDS	138466757	138468078		+	2	gene_id "EGR1";
chr5	hg38_refGene	exon	138466757	138469315		+		gene_id "EGR1";
chr5	hg38_refGene	stop_codon	138468079	138468081		+		gene_id "EGR1";

https://useast.ensembl.org/info/website/upload/gff.html

A note on standards

https://xkcd.com/927/

Visualizing reads with JBrowse

Genome	Track	View	Help	Tools														Dio Share
0	20,000,00	0	40,000,00	0 60	0,000,000	80,000,0	00	100,000,000	0 12	0,000,0	00	14	10, 00,	000	16	60,000	,000	180,000
			\langle	$\rightarrow \rightarrow$		a @ 🕀	chr5 👻	chr5:13846	156313846	69771 (8	3.21 Kb)		ào i	2				
	138.462.50	0				138,465,000					138,4	67,500)					13
@_Refere	nce sequence		Zoom i	n to see seque	ence		1	Zoom in to se	e sequence					Zo	om in	to see	sequence	2
hg38_g	enes.bed						EGR1	·	E	GR1			-	•				
								FGP1		GP1		-	-		_			•
								EGR1 +		.GRT				EGR1				
© HIV_12	hr_rep1_pass	_subsamp	ple.fastq.gz	:			3	۱ ۱=	-			1	Ŋ	-	ų	•	•	
© HIV_12	hr_rep2_pass	_subsamp	ple.fastq.gz	:			÷ y			e	Ţ	Ņ		~~				
© HIV_12	hr_rep3_pass	_subsamp	ple.fastq.gz	:			W	v-		v	W	Ŷ	11		105			
S Mock_1	12hr_rep1_pa	ss_subsar	nple.fastq.	gz						-	•••		-				-	
Mock_1	2hr_rep2_pa	ss_subsar	mple.fastq.	gz			-			1			•		•		-	
Mock_1	2hr_rep3_pa	ss_subsar	nple.fastq.į	gz	-			-			•	-			••			

Workflow

Counting reads for each gene

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded

Result is a gene count matrix:

Gene	Sample 1	Sample 2	Sample 3	Sample 4
А	1000	1000	100	10
В	10	1	5	6
С	10	1	10	20

Workflow

- Raw Count != Expression strength
- Normalization:
 - Eliminates factors that are not of interest for our experiment
 - Enables accurate comparison between samples or genes

Sample A Reads

The number of reads mapped to a gene depends on

• Gene Length

Sample A Reads

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth

Sample B Reads (total = 50)

ne per het ne ne per bei het het het het het ne "på ne "he "he het ne pe beind ne pe pe pe pe het het den het ne beind pe beine persenensen de persenense generatieren de ps ne pe pe het het ne persenense persenense personnense pe personnense pe	65 25 26 26 26 26 26 26 26 26 26 26 26 26 26	
Gene Z	Gene Z	

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample (RNA Composition)

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample (RNA Composition)

DESeq2 Median of Ratios

Gene	Sample A	Sample B
Х	26	10
Υ	26	10
Z	26	10
DE	2	50
Total =	80	80

Sample A Reads Sample B Reads Gene X Gene X Gene Y Gene Y Gene Z Gene

Gene DE

Gene DE

1. Take a row-wise average to produce an average sample (geometric mean) $\sqrt[n]{v}$

 $\sqrt[n]{x_1x_2\cdots x_n}$

Gene	Sample A	Sample B	Avg. Sample
Х	26	10	16
Υ	26	10	16
Z	26	10	16
DE	2	50	10

1. Take a row-wise average to produce an average sample (geometric mean) $\sqrt[n]{x_1x_2\cdots x_n}$

Gene	Sample A	Sample B	Avg. Sample
Х	26	10	 16
Υ	26	10	16
Z	26	10	16
DE	2	50	10

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B /Avg.
Х	26/16 = 1.6	10/16 = 0.6
Y	1.6	0.6
Z	1.6	0.6
DE	0.2	5

1. Take a row-wise average to produce an average sample (geometric mean) $\sqrt[n]{x_1x_2\cdots x_n}$

Gene	Sample A	Sample B	Avg. Sample
Х	26	10	 16
Y	26	10	16
Z	26	10	16
DE	2	50	16

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B /Avg.
Х	26/16 = 1.6	10/16 = 0.6
Υ	1.6	0.6
Z	1.6	0.6
DE	0.2	5

3. Take the **median** of each column. Should be ~1 for all

1. Take a row-wise average to produce an average sample (geometric mean)

Gene	Sample A	Sample B	Avg. Sample
Х	26	10	 16
Y	26	10	16
Z	26	10	16
DE	2	50	16

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B /Avg.
Х	26/16 = 1.6	10/16 = 0.6
Y	1.6	0.6
Z	1.6	0.6
DE	0.2	5

3. Take the **median** of each column. Should be ~1 for all

4. Divide all counts by sample specific size factor

Gene	Sample A / S _A	Sample B / S _B
Х	16.3	16.7
Y	16.3	16.7
Z	16.3	16.7
DE	1.3	83.3

Normalized counts for non-DE genes are similar!

estimateSizeFactors(dds)

Assumption of DESeq2 Median of Ratios

Median of Ratios method assumes that most genes are not Differentially Expressed between samples.

Loven et al "Revisiting Global Gene Expression Analysis" Cell 2012 <u>https://doi.org/10.1016/j.cell.2012.10.012</u>

Assumption of DESeq2 Median of Ratios

Median of Ratios method assumes that most genes are not Differentially Expressed between samples.

COUNTER EXAMPLE

- Late stage cell death (total RNA DOWN)
- High c-Myc cells (total RNA UP)

Known quantity spike-in transcripts (ERCC) can be used to normalize in these cases.

Loven et al "Revisiting Global Gene Expression Analysis" Cell 2012 <u>https://doi.org/10.1016/j.cell.2012.10.012</u>

Normalization methods

Normalization method	Description	Accounted factors	Recommended use
CPM (counts per million)	K _i Total Reads per Sample/10 ⁶	sequencing depth	Comparison between replicates of the sample group
R/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	$rac{K_i}{Gene \ Length/10^3 * \ Total \ Reads \ per \ Sample/10^6}$	sequencing depth and gene length	Comparison between genes in a sample
DESeq2's median of ratios [<u>1</u>]	K _i divided by sample-specific size factors	sequencing depth and RNA composition	Differential Expression between samples

Similar to DESeq2: EdgeR, limma-voom

Quality Control Visualizations

Examine sources of variation in the data

- Principal Component Analysis
- Hierarchical Clustering

(Log2 + 1) Transformed, Normalized Count Table

Gene	Sample A	Sample B	Sample C
1	1	1.6	0.5
2	2.2	-0.2	1
3	-1	1	3.1

Principle Component Analysis

Dimension reduction technique Example: 3 gene dimensions -> 2 PC

Gene	Mock_12h	Mock_12h	Mock_24h	Mock_24h	HIV_12h	HIV_12h	HIV_24h	HIV_24h
Gene 1	8.9	8.9	8.9	9.0	8.9	8.9	9.0	6.8
Gene 2	0.6	-1.0	0.6	-1.0	0.6	-1.0	0.6	3.8
Gene 3	4.1	11.9	4.1	-0.5	4.1	8.7	4.0	4.4

original data space

Do your samples cluster as expected?

What are the major sources of variation in the data?

Principle Component Analysis

- ✓ Do your samples cluster as expected?
- $\checkmark\,$ What are the major sources of variation in the data?

Principle Component Analysis

- ✓ Do your samples cluster as expected?
- \checkmark What are the major sources of variation in the data?
- ✓ Is there a batch effect?

Image https://support.bioconductor.org/p/111491/

Differential Expression with DESeq2

Multi-factor experiment design

Factor 1: Infection status (Mock or HIV)

Factor 2: Time (12 or 24 hr)

Multi-factor experiment design

- Differential Expression compares two conditions
- We'll choose Infection status at 12 hr (Mock or HIV) for comparison
- We could also choose time, or a combination of multiple factors

Step 1: Modeling gene expression values

All leading DE tools use **regression models** to estimate the fold change between conditions for **each gene**

Step 1: Modeling gene expression values

All leading DE tools use **regression models** to estimate the fold change between conditions for **each gene** Example, simple linear regression:

DESeq2 uses a Generalized Linear Model with a Negative Binomial error Distribution, which has been shown to be best fit for RNAseq data.

Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

Step 2: Hypothesis Testing

Is EGR1 differentially expressed?

Yes! p << 0.05

 $H_0: \beta_1 = 0 \quad vs. \quad H_A: \beta_1 \neq 0$

 $\rm H_{o}:$ there is no systematic difference between the average read count values for Mock vs. HIV

• Statistical test – Wald test (similar to t-test) on β_1

•
$$Z = \beta_1 / SE_{\beta_1}$$

• Z-statistic is compared to the normal distribution and probability of getting a statistic at least as extreme is computed

DESeq2 Results table

GeneID	Base mean	log2FoldChange	StdErr	P-value	P-adj
EGR1	1273	1.55	0.13	1.19e-77	1.52e-73
MYC	5226	-1.53	0.14	1.63e-36	1.03e-32

- Mean of normalized counts averaged over all samples from two conditions (HIV, Mock)
- Log of the fold change between two conditions
- StdErr Standard error of coefficient (e.g. b₁)
- P-value the probability that the Wald statistic is as extreme as observed if H_0 were true
- P-adj accounting for multiple testing correction

References

DESeq2 vignette (R/Rstudio):

<u>http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#dif</u> <u>ferential-expression-analysis</u>

HBC Training (Command line/R): https://hbctraining.github.io/DGE_workshop

Galaxy Training: https://galaxyproject.org/tutorials/rb_rnaseq/ Next: Introduction To Galaxy