RNA-seq to study HIV \mid Rebeca Baossky
 Pr Bioinformatics Scientist Infection in cells ${ }^{\text {Dece202 }}$

https://it.tufts.edu/research-technology

Outline

DNA and RNA in a cell

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg

Two common analyses

DNA Sequencing *

- Fixed number of copies of a gene per cell
- Analysis goal:

Variant calling and interpretation

- Number of copies of a gene transcript per cell depends on gene expression
- Analysis goal:
- Bulk : Differential expression
- Single cell : Quantify different cell populations
https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg

Today we will cover RNA sequencing

RNA Sequencing

- Number of copies of a gene transcript per cell depends on gene expression
- Analysis goal:
- Bulk : Differential expression
- Single cell : Quantify different cell populations

"Bulk" RNA seq workflow

Library prep and sequencing

Bioinformatics

Good resource: $\underline{\text { Griffiths et al Plos Comp Bio } 2015}$

RNA seq library prep and sequencing

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

- Enrichment for mRNA, two options
- In humans, ~95\%-98\% of all RNA molecules are rRNAs

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

- Enrichment for mRNA, two options
- In humans, ~95\%-98\% of all RNA molecules are rRNAs
- Random priming and reverse transcription
- Double stranded cDNA synthesis
- Sequencing adapter ligation

Resources:
Illumina Sequencing by Synthesis
Griffiths et al Plos Comp Bio 2015

RNA seq bioinformatics

Goal of Differential Expression

"How can we detect genes for which the counts of reads change between conditions more systematically than as expected by chance"

Oshlack et al. 2010. From RNA-seq reads to differential expression results. Genome Biology 2010, 11:220

Our dataset

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4 ${ }^{+}$T Cell Line
Stewart T. Chang, Pavel Sova, Xinxia Peng, Jeffrey Weiss, G. Lynn Law, Robert E. Palermo, Michael G. Katze

HIV Infected
CD4+ T Cells

12 hour
24 hour

HIV lifecycle

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

HIV lifecycle

HIV infection in a human host

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

The study question

What changes take place in the first 12-24 hours of HIV infection in terms of gene expression of host cell and viral replication levels?

Study findings

Using RNAseq, authors demonstrate:

- 20% of reads mapped to HIV at $12 \mathrm{hr}, 40 \%$ at 24 hr
- Downregulation of T cell differentiation genes at 12 hr
- 'Large-scale disruptions to host transcription' at 24 hr

Bulk vs Single Cell RNA Sequencing

https://www.10xgenomics.com/blog/single-cell-rna-seq-an-introductory-overview-and-tools-for-getting-started

scRNA cell subsets in PBMC

https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html

10x single cell technology

https://github.com/hbctraining/scRNA-seq

Bulk RNAseq for Differential Expression is OK!

Our (bulk) RNAseq Workflow

Quality control on Raw Reads

Raw reads in Fastq format

```
@SRR098401.109756285
GACTCACGTAACTTTAAACTCTAACAGAAATATACTA...
+
CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD...
```

1. Sequence identifier
2. Sequence
3. + (optionally lists the sequence identifier again)
4. Quality string

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

```
Quality encoding: !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI
```

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Back to our read:

```
@SRR098401.109756285
GACTCACGTAACTTTAAACTCTAACAGAAATATACTA...
+
CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD...
    C -> Q = 34 -> Probability < 1/1000 of an error
```


Raw read quality control

Abstract

Fastq File @SRR497699.30343179.1 HWI-EAS39X_10175_FC61MK0_4_117_4812_10346 length=75 CAGATGGCCGCAGAGGAAGCCATGAAGGCCCTGCATGGGGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGAC

IIIIGIIHFIIIIBIIDII>IIDHIIHDIIIGIFIIEIGIBDDEFIG<EIEGEEG;<DB@A8CC7<><C@BBDDB @SRR497699.11626500.1 HWI-EAS39X_10175_FC61MK0_4_44_8384_16550 length=75 CGTACTGAACGTACAACGCTGATGCCATCCGCATATTTAAATTCGGCAGCGTTAATTAACTCCCTGACCTCGGCG $+$ HHHHHHHHHHHFHHHGHHHHHHB@HHHHHHHHFHHHHHEHHHHHHHHHHHHGEHDHHEHHHHBHHHGHHHHHHHG @SRR497699.29057557.1 HWI-EAS39X_10175_FC61MK0_4_112_12508_19308 length=75 CCGAGGCTTAGCTTTCATTATCACTGTCTCCCAGGGTGTGCTTGTCAAAGAGATAAGATCGGAAGAGCGGTTCAG $+$ GGGBGGGDGBHHDHHGEGGGHHHHHGHHGHHHHHHGBGGDGGEGDHHHHHHHHHHHH@BHHGGHGHHHHHEEGHH @SRR497699.1331889.1 HWI-EAS39X_10175_FC61MK0_4_5_4738_15920 length=75 CTTACTTTGTAGCCTTCATCAGGGTTTGCTGAAGATGGCGGTATATAGGCTGAGCAAGAGGTGGTGAGGTTGATC $+$

Metrics

- Sequence Quality

FastQC Tool
\qquad

- GC content
- Per base sequence content
- Adapters in Sequence

FastQC: Sequence Quality Histogram

FastQC: Per sequence GC content

Per sequence GC content

FastQC: Per sequence GC content

© Per sequence GC content

GOOD: follows normal distribution (sum of deviations is $<15 \%$ of reads)
${ }^{*}$ Per sequence GC content

BAD: can indicate contamination with adapter dimers, or another species

FastQC: Per Base Sequence Content

- Proportion of each position for which each DNA base has been called
- RNAseq data tends to show a positional sequence bias in the first ~ 12 bases
- The "random" priming step during library construction is not truly random and certain hexamers are more prevalent than others

FastQC: Per Base Sequence Content

(

EXPECTED for RNAseq
BAD:
Shows a strong positional bias throughout the reads, which in this case is due to the library having a certain sequence that is overrepresented

FastQC: Adapter content

FastQC will scan each read for the presence of known adapter sequences

The plot shows that the adapter content rises over the course of the read

Solution - Adapter trimming!

sequencing.qcfail.com

FastQC -> MultiQC

Should view all samples at once to notice abnormalities for our dataset.

We'll use a tool called
"Trim Galore!" to trim adapters and remove low quality bases/reads.

Workflow

Read Alignment

- RNAseq data originates from spliced mRNA (no introns)
- When aligning to the genome, our aligner must find a spliced alignment for reads
- We use a tool called STAR (Spliced Transcripts Alignment to a Reference) that has a exon-aware mapping algorithm.

Reference sequence

Sequence Alignment Map (SAM)


```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * * 0 0 ATAGCTTCAGC 
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
```

Header
section

Alignment
section

CIGAR: summary of alignment, e.g. match, gap, insertion, deletion Mapping Quality
Position
Ref Sequence name
Flag: indicates alignment information e.g. paired, aligned, etc https://broadinstitute.github.io/picard/explain-flags.htm|
Read ID
www.samformat.info

Sequence Alignment Map (SAM)

CSQ SN:ref LN: 75
r001 99 ref 730 8M2I4M1D3M $=37 \quad 39$ TTAGATAAAGGATACTG *
r002 0 ref 930 3S6M1P1I4M * 0 AAAAGATAAGGATA *
r003 0 ref $9305 S 6 M \quad * 0$ GCCTAAGCTAA * SA:Z:ref,29,-,6H5M, 17, 0 ;
r004 0 ref 1630 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 2917 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref $37309 \mathrm{M}=7$-39 CAGCGGCAT \quad NM:i:1
Paired end info

Header
section

Alignment section
www.samformat.info

Genome Annotation Standards

- STAR can use an annotation file gives the location and structure of genes in order to improve alignment in known splice junctions
- Annotation is dynamic and there are at least three major sources of annotation
- The intersection among RefGene, UCSC, and Ensembl annotations shows high overlap. RefGene has the fewest unique genes, while more than 50% of genes in Ensembl are unique

- Be consistent with your choice of annotation source!

Gene Annotation Format (GTF)

In order to count genes, we need to know where they are located in the reference sequence STAR uses a Gene Transfer Format (GTF) file for gene annotation

Frame
Strand
Chrom Source Feature type Start Stop (Score) Attribute
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { chr5 } & \text { hg38_refGene } & \text { exon } & 138465492 & 138466068 & . & + & .\end{array}\right]$ gene_id "EGR1";

A note on standards

HOW STANDARDS PROLIFERATE:

(SEEP A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

| SOON: |
| :---: | :---: |
| SITUATION: |
| THERE ARE |
| I4 COMPETING RIDICULOUS! |
| STANDARDS. |
| WE NEED TO DEVELOP |
| ONE UNIVERSAL STANDARD |
| THAT COVERS EVERYONE'S |
| USE CASES. YEAH! |
| SITUATION: |
| THERE ARE |
| IS COMPETING |
| STANDARDS. |

Visualizing reads with JBrowse

Workflow

Counting reads for each gene

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded

Result is a gene count matrix:

Gene	Sample 1	Sample 2	Sample 3	Sample 4
A	1000	1000	100	10
B	10	1	5	6
C	10	1	10	20

Workflow

Normalization

Sample A Reads

- Raw Count != Expression strength
- Normalization:
- Eliminates factors that are not of interest for our experiment
- Enables accurate comparison between samples or genes

Normalization

The number of reads mapped to a gene depends on

- Gene Length

Sample A Reads

Normalization

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth

Normalization

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample (RNA Composition)

Adapted from https://hbctraining.github.io/DGE_workshop

Normalization

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample (RNA Composition)

DESeq2 Median of Ratios

Adapted from https://hbctraining.github.io/DGE_workshop

Normalization: DESeq2 Median of Ratios

Normalization: DESeq2 Median of Ratios

1. Take a row-wise average to produce an average sample (geometric mean) $\sqrt[n]{x_{1} x_{2} \cdots x_{n}}$

Gene	Sample A	Sample B		Avg. Sample
X	26	10		16
Y	26	10		16
Z	26	10		16
$D E$	2	50		10

Normalization: DESeq2 Median of Ratios

1. Take a row-wise average to produce an average sample (geometric mean) $\sqrt[n]{x_{1} x_{2} \cdots x_{n}}$

Gene	Sample A	Sample B		
X	26	10		Avg. Sample
X	26	10		16
Y	26	10		16
Z	2	50	16	
$D E$			10	

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B /Avg.
X	$26 / 16=1.6$	$10 / 16=0.6$
Y	1.6	0.6
Z	1.6	0.6
DE	0.2	5

Normalization: DESeq2 Median of Ratios

1. Take a row-wise average to produce an average sample (geometric mean) $\sqrt[n]{x_{1} x_{2} \cdots x_{n}}$

Gene	Sample A	Sample B		Avg. Sample
X	26	10		16
Y	26	10		16
Z	26	10		16
$D E$	2	50		16

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B/Avg.
X	$26 / 16=1.6$	$10 / 16=0.6$
Y	1.6	0.6
Z	1.6	0.6
DE	0.2	5

3. Take the median of each column. Should be ~ 1 for all

Size factor	1.6	0.6

Normalization: DESeq2 Median of Ratios

1. Take a row-wise average to produce an average sample (geometric mean) $\sqrt[n]{x_{1} x_{2} \cdots x_{n}}$

Gene	Sample A	Sample B	Avg. Sample
X	26	10	16
Y	26	10	16
Z	26	10	16
DE	2	50	16

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B/Avg.
X	$26 / 16=1.6$	$10 / 16=0.6$
Y	1.6	0.6
Z	1.6	0.6
DE	0.2	5

3. Take the median of each column. Should be ~ 1 for all

Size factor	1.6	0.6

4. Divide all counts by sample specific size factor

Gene	Sample A / S_{A}	Sample B / S_{B}
X	16.3	16.7
Y	16.3	16.7
Z	16.3	16.7
DE	1.3	83.3

Normalized counts for non-DE genes are similar!

Assumption of DESeq2 Median of Ratios

Median of Ratios method assumes that most genes are not Differentially Expressed between samples.

Loven et al "Revisiting Global Gene Expression Analysis" Cell 2012https://doi.org/10.1016/i.cell.2012.10.012

Assumption of DESeq2 Median of Ratios

Median of Ratios method assumes that most genes are not Differentially Expressed between samples.
COUNTER EXAMPLE

- Late stage cell death (total RNA DOWN)
- High c-Myc cells (total RNA UP)

Known quantity spike-in transcripts (ERCC) can be used to normalize in these cases.

Normalization methods

Normalization method	Description	Accounted factors	Recommended use
CPM (counts per million)		K_{i}	Total Reads per Sample $/ 0^{6}$

Similar to DESeq2: EdgeR, limma-voom

Quality Control Visualizations

Examine sources of variation in the data

- Principal Component Analysis
- Hierarchical Clustering
(Log2 +1) Transformed, Normalized Count Table

Gene	Sample A	Sample B	Sample C
1	1	1.6	0.5
2	2.2	-0.2	1
3	-1	1	3.1

Principle Component Analysis

Dimension reduction technique Example: 3 gene dimensions -> 2 PC

Gene	Mock_12h	Mock_12h			HIV_12h	HIV_12h	HIV_24h	HIV_24h
Gene 1	8.9	8.9	8.9	9.0	8.9	8.9	9.0	6.8
Gene 2	0.6	-1.0	0.6	-1.0	0.6	-1.0	0.6	3.8
Gene 3	4.1	11.9	4.1	-0.5	4.1	8.7	4.0	4.4

original data space

Principle Component Analysis

\checkmark Do your samples cluster as expected?
\checkmark What are the major sources of variation in the data?

Principle Component Analysis

\checkmark Do your samples cluster as expected?
\checkmark What are the major sources of variation in the data?
\checkmark Is there a batch effect?

Image https://support.bioconductor.org/p/111491/

Differential Expression with DESeq2

Multi-factor experiment design

Factor 1:
Infection status (Mock or HIV)
Factor 2:
Time (12 or 24 hr)

Multi-factor experiment design

- Differential Expression compares two conditions
- We'll choose Infection status at 12 hr (Mock or HIV) for comparison
- We could also choose time, or a combination of multiple factors

Step 1: Modeling gene expression values

All leading DE tools use regression models to estimate the fold change between conditions for each gene

Step 1: Modeling gene expression values

All leading DE tools use regression models to estimate the fold change between conditions for each gene Example, simple linear regression:

DESeq2 uses a Generalized Linear Model with a Negative Binomial error Distribution, which has been shown to be best fit for RNAseq data.

Love, M.I., Huber, W. \& Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).

Step 2: Hypothesis Testing

Is EGR1 differentially expressed?
Yes! p << 0.05

$$
\mathrm{H}_{\mathrm{O}}: \beta_{1}=0 \quad \text { vs. } \quad \mathrm{H}_{\mathrm{A}}: \beta_{1} \neq 0
$$

H_{0} : there is no systematic difference between the average read count values for Mock vs. HIV

- Statistical test - Wald test (similar to t-test) on β_{1}
- $\mathrm{Z}=\beta_{1} / \mathrm{SE}_{\beta 1}$
- Z-statistic is compared to the normal distribution and probability of getting a statistic at least as extreme is computed

DESeq2 Results table

GenelD	Base mean	log2FoldChange	StdErr	P-value	P-adj
EGR1	1273	1.55	0.13	$1.19 \mathrm{e}-77$	$1.52 \mathrm{e}-73$
MYC	5226	-1.53	0.14	$1.63 \mathrm{e}-36$	$1.03 \mathrm{e}-32$

- Mean of normalized counts - averaged over all samples from two conditions (HIV, Mock)
- Log of the fold change between two conditions
- StdErr - Standard error of coefficient (e.g. b_{1})
- P-value - the probability that the Wald statistic is as extreme as observed if H_{0} were true
- P-adj - accounting for multiple testing correction

DESeq2 P-value histogram

- Histogram of raw p-values for all genes examined
- P-value: Probability of getting a log2FoldChange as extreme as observed if the true log2FoldChange $=0$ for that gene (null hypothesis)

How to interpret:

- Random P-values are expected to be uniform, if you have true positives you should see a peak close to zero

DESeq2 MA plot

Shows the relationship between

- M : The difference in expression $\log ($ HIV $)-\log ($ Mock $)=\log ($ HIV/Mock $)$
- A: Average expression strength Average(Mock, HIV)
- Genes with adjusted p-value <0.1 are in red
- Gives an overview of your results

MA-plot for condition: mock vs hiv

Study findings

- T cell differentiation-related genes were overrepresented in the DEG at 24 hr
- 'Large-scale disruptions to host transcription' at 24 hr

Conclusions

References

DESeq2 vignette (R/Rstudio):
http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html\#dif ferential-expression-analysis

HBC Training (Command line/R):
https://hbctraining.github.io/DGE workshop

Galaxy Training:
https://galaxyproject.org/tutorials/rb rnasea/

Outline

E Galaxy

* Web-based platform for running data analysis and integration, geared towards bioinformatics
> Open-source
ح Developed at Penn State, Johns Hopkins, OHSU and Cleveland Clinic with many more outside contributions
- Large and extremely responsive community

Access Galaxy

1. Connect to Tufts Network, either on campus or via VPN
2. Visit https://galaxy.cluster.tufts.edu/
3. Log in with you cluster username and password
4. In another browser window go to course workflow:
https://rbatorsky.github.io/intro-to-rnaseq-with-galaxy/

Suggested screen layout

User Interface

User Interface

TOP MENU BAR

Galaxy User Interface

History

Unnamed history
(empty) \geqslant
(i) This history is empty. You can load your own data or get data from an external source

History

Tools

Tools

Importing data

Import shared data libraries

Access Galaxy

1. Connect to Tufts Network, either on campus or via VPN
2. Visit https://galaxy.cluster.tufts.edu/
3. Log in with you cluster username and password
4. In another browser window go to course workflow: https://rbatorsky.github.io/intro-to-rnaseq-with-galaxy/
5. Under Table of Contents click on "Introduction and Setup"

Suggested screen layout

