
To download a copy of this slides, please go to

https://go.tufts.edu/chbe0165_af

Introduction to AlphaFold2

Shirley (Xue) Li, PhD, Bioinformatician Research Technology, TTS, Tufts University <u>xue.li37@tufts.edu</u>

<u>tts-research@tufts.edu</u>

The Research Technology Team

- Consultation on Projects and Grants
- High Performance Cluster Support
- Workshops

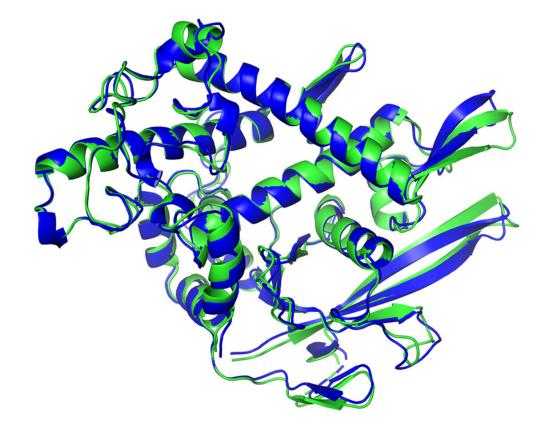
<u>https://it.tufts.edu/bioinformatics</u> <u>https://sites.tufts.edu/datalab/workshops/</u>

We offer a range of services including bioinformatics tools on the HPC cluster, secondary analysis pipelines for NGS data including DNA-seq, RNA-seq, and ChIP-seq, data visualization, and training and consultation!

Overview

01. The importance of protein structure

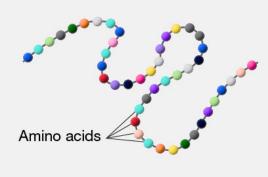
Levels of protein organization Approaches to study protein structure


02. Introduction to AlphaFold2

AF architecture

03. Running AlphaFold2 on Tufts server

Open OnDemand Command Line Interface


04. PyMOL: Visualizing Protein Structures

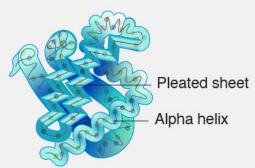
01. The importance of protein structure

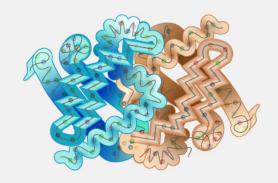
Levels of protein structure

Primary protein structure is the sequence of a chain of amino acids.

Secondary protein structure occurs when the sequence of amino acids folds into a three-dimensional shape.

Pleated sheet Alpha helix


- AAA


Tertiary protein structure

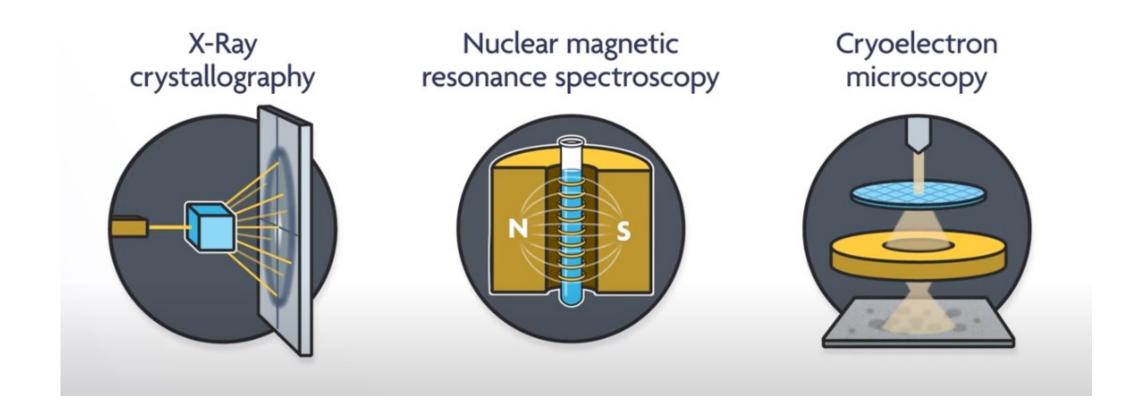
folds upon itself.

occurs when a mature protein

Quaternary protein structure is a protein consisting of more than one polypeptide chain.

https://www.genome.gov/genetics-glossary/Protein

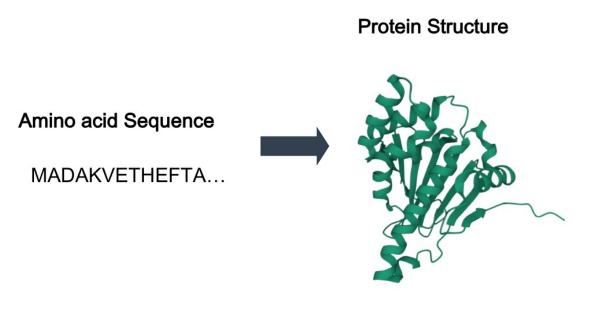
The importance of protein structure


- Function Determination
- Biological Mechanisms
- Disease Understanding
- Protein Engineering
- Drug Design
- Vaccine Development
-

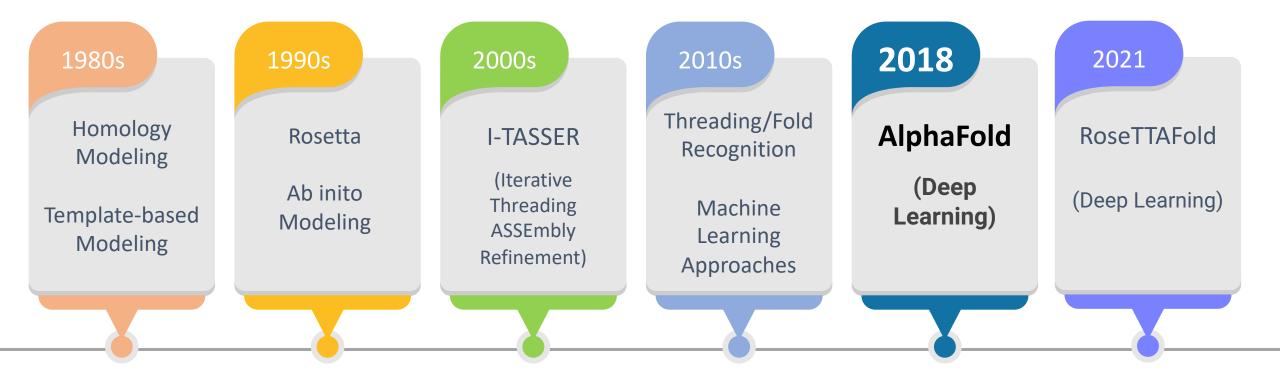
Q8I3H7: May protect the malaria parasite against attack by the immune system. Mean pLDDT 85.57.

https://alphafold.ebi.ac.uk/

Experimental approaches to study protein structure

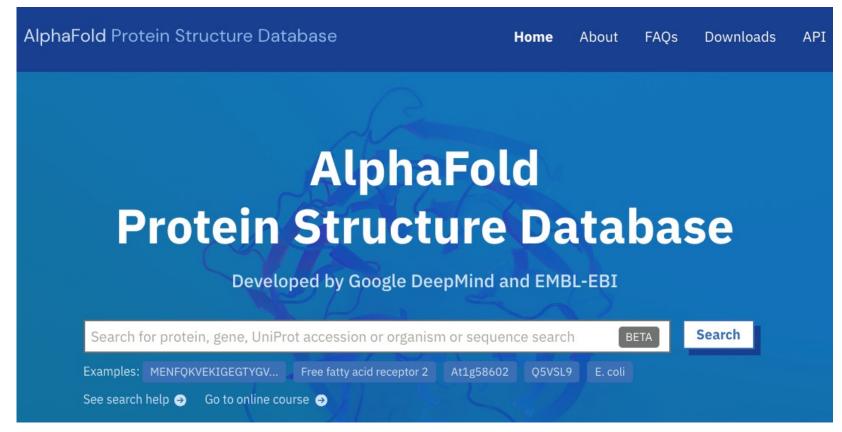


https://www.youtube.com/watch?v=7q8Uw3rmXyE


Computational approaches to study protein structure

- Instead of laboratory experimentation, there have been massive efforts to use a protein's sequence to determine structure.
- In 1994, the Critical Assessment of Structure Protein (CASP) was established. It's a scientific even focused on the assessment of protein structure prediction methods.

https://deepmind.google/discover/blog/alphafold-asolution-to-a-50-year-old-grand-challenge-in-biology/


Computational approaches to study protein structure

02. Introduction to AlphaFold2

DeepMind's AlphaFold

AlphaFold - Developed by DeepMind, it made groundbreaking progress in 2018 with AlphaFold 1 and then in 2020 with AlphaFold 2, which marked a significant leap in the field.

Article Published: 15 January 2020

Improved protein structure prediction using potentials from deep learning

Andrew W. Senior ^[2], Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray Kavukcuoglu & Demis Hassabis

Nature 577, 706–710 (2020) Cite this article

164k Accesses | 1704 Citations | 656 Altmetric | Metrics

AlphaFold2

Article Open access Published: 15 July 2021

Highly accurate protein structure prediction with AlphaFold

AlphaFold

John Jumper ^I, <u>Richard Evans</u>, <u>Alexander Pritzel</u>, <u>Tim Green</u>, <u>Michael Figurnov</u>, <u>Olaf Ronneberger</u>, <u>Kathryn Tunyasuvunakool</u>, <u>Russ Bates</u>, <u>Augustin Žídek</u>, <u>Anna Potapenko</u>, <u>Alex Bridgland</u>, <u>Clemens</u> <u>Meyer</u>, <u>Simon A. A. Kohl</u>, <u>Andrew J. Ballard</u>, <u>Andrew Cowie</u>, <u>Bernardino Romera-Paredes</u>, <u>Stanislav</u> <u>Nikolov</u>, <u>Rishub Jain</u>, <u>Jonas Adler</u>, <u>Trevor Back</u>, <u>Stig Petersen</u>, <u>David Reiman</u>, <u>Ellen Clancy</u>, <u>Michal</u> <u>Zielinski</u>, ... <u>Demis Hassabis</u> ^I + Show authors

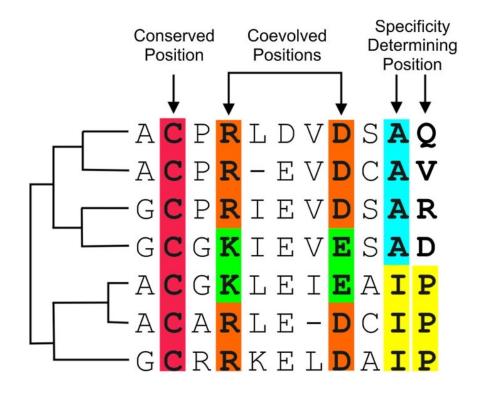
Nature 596, 583–589 (2021) Cite this article

1.47m Accesses 8815 Citations 3517 Altmetric Metrics

AlphaFold vs Other Computational Approaches

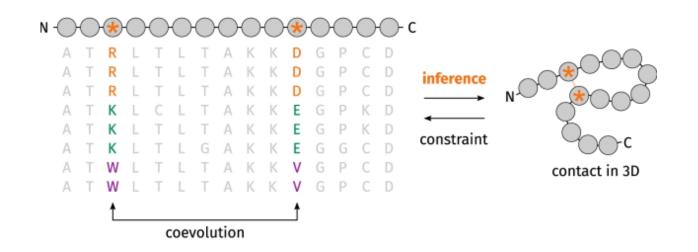
- Classical prediction methods require structure templates (e.g. MODELLER, I-TASSER) and they are <u>heavily dependent on</u> <u>sequence homology</u>.
 - These classical methods depend on the alignment of a target protein sequence with other sequences of known structure to infer the target's structure.
- AlphaFold employs deep learning, using a neural network to predict the "distance" and "angles" between residues in a protein, independent of templates.
 - This approach requires significant computational resources due to the complexity of the calculations involved.

AlphaFold 2 Architecture

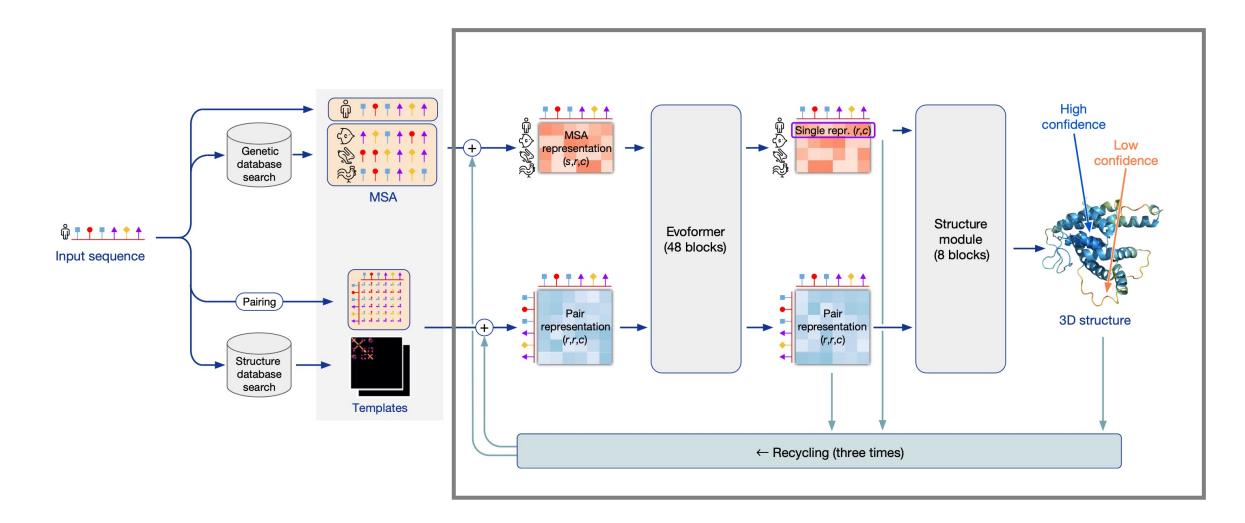

AlphaFold takes only sequence from the user

(Jumper, Evans et al. 2021)

Step 1: Database search and preprocessing


- Protein structural information can be gained by understanding multiple sequence alignments (MSA)
- When we align similar protein sequences we identify:
 - Conserved positions: where the letter does not change
 - Coevolved positions: where the letter will change with another letter
 - Specificity determining positions: where the letter is consistently different

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825149/


Residue Coevolution

- With an MSA we can identify residues that coevolve, or change together
- We can then reason that residues that change together must be close together in 3D space

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825149/

Step 2 & 3 : Evoformer and Structure Module

Read the paper to understand the algorithm

Article Published: 15 January 2020

Improved protein structure prediction using Article Open Article Open

Andrew W. Senior ^{ICI}, <u>Richard Evans</u>, John Jumper, James Kirkpa Qin, Augustin Žídek, Alexander W. R. Nelson, Alex Bridgland, Hug Simonyan, Steve Crossan, Pushmeet Kohli, David T. Jones, David Hassabis

Nature 577, 706–710 (2020) Cite this article

164k Accesses | 1704 Citations | 656 Altmetric | Metrics

Article Open access Published: 15 July 2021

Highly accurate protein structure prediction with AlphaFold

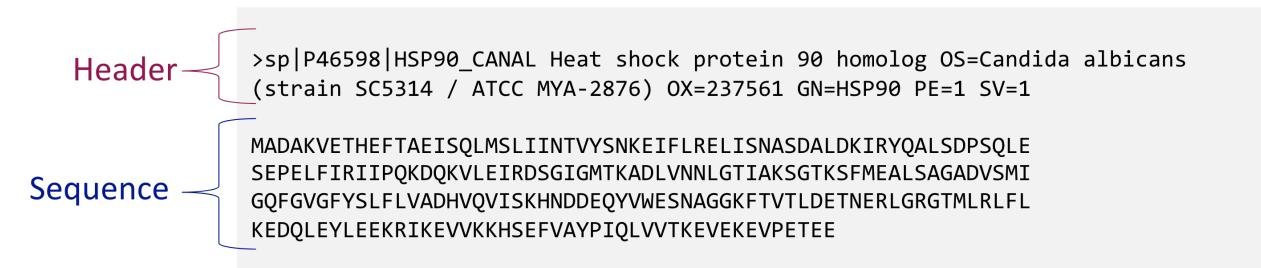
John Jumper [™], <u>Richard Evans</u>, <u>Alexander Pritzel</u>, <u>Tim Green</u>, <u>Michael Figurnov</u>, <u>Olaf Ronneberger</u>, <u>Kathryn Tunyasuvunakool</u>, <u>Russ Bates</u>, <u>Augustin Žídek</u>, <u>Anna Potapenko</u>, <u>Alex Bridgland</u>, <u>Clemens</u> <u>Meyer</u>, <u>Simon A. A. Kohl</u>, <u>Andrew J. Ballard</u>, <u>Andrew Cowie</u>, <u>Bernardino Romera-Paredes</u>, <u>Stanislav</u> <u>Nikolov</u>, <u>Rishub Jain</u>, <u>Jonas Adler</u>, <u>Trevor Back</u>, <u>Stig Petersen</u>, <u>David Reiman</u>, <u>Ellen Clancy</u>, <u>Michal</u> <u>Zielinski</u>, ... <u>Demis Hassabis</u>[™] + Show authors

Nature 596, 583–589 (2021) Cite this article

1.47m Accesses 8815 Citations 3517 Altmetric Metrics

AlphaFold represents the state of the art

- Thoroughly validated in competition, but not perfect.
- Not reliable when:
 - Too-sparse MSAs
 - Sequence are not evolutionary
 - Antibody-antigen interface
 - Point mutation studies
 - Large state-dependent structure differences

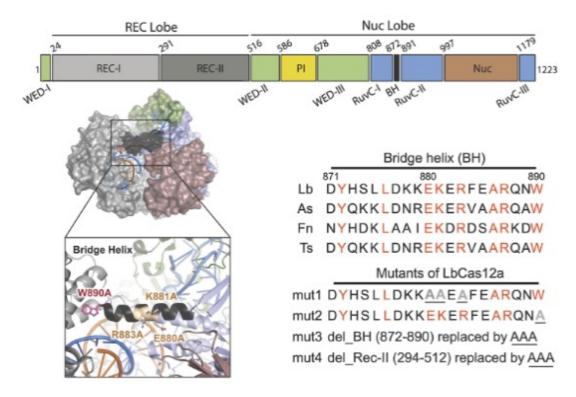

To download a copy of this slides, please go to

https://go.tufts.edu/chbe0165_af

03. Running AlphaFold on Tufts HPC

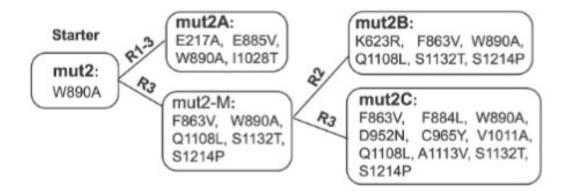
Protein Sequence Information

- Protein Sequence information
- Stored as a FASTA file. Consists of:


Today's study

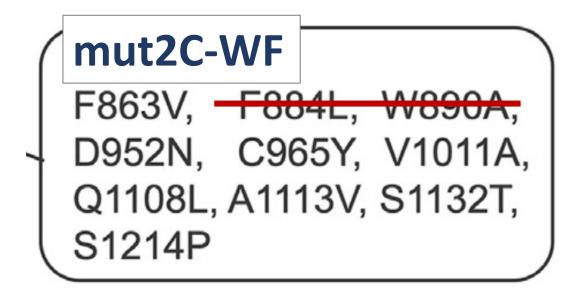
- Today we will be looking at a study by Ma et al. 2022, where they engineer Cas12a variants with reduced trans-activity while maintaining cis-activity
- They start by screening multiple mutants and identify mutant 2 as having reduced trans-activity
- Variants were then introduced in mutant 2 to create a variant with less trans-activity, and maintained cis-activity

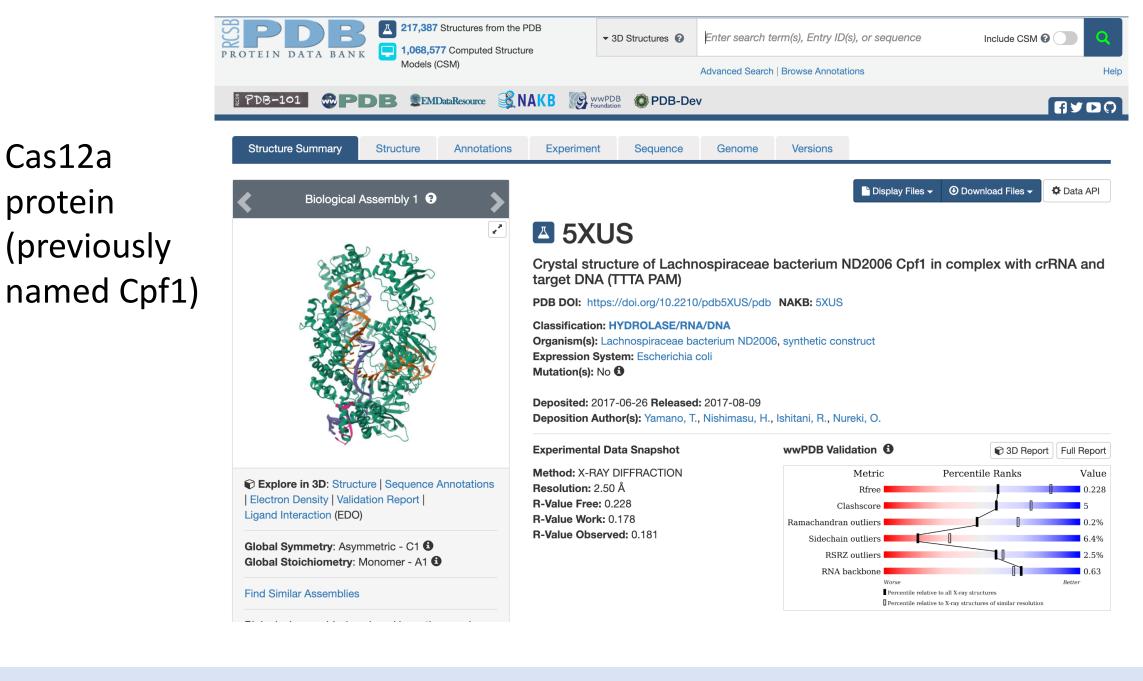
Today's study


- Cas12a is used for gene editing across various organisms.
- The **cis-activity** of Cas12a refers to its ability to cleave DNA that is directly bound by the complex formed between Cas12a and its crRNA.
- The trans-cleavage activity of Cas12a refers to its capability to cut single-stranded DNA (ssDNA) molecules not bound by the Cas12a-crRNA complex, a process initiated upon the enzyme's activation through the recognition and cleavage of its target DNA.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825149/

Variant Structure Prediction with AlphaFold2


- Three variants were ultimately refined: mut2B-W, mut2C-W, and mut2C-WF
- We will use AlphaFold2 to predict the structure of mut2C-WF



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825149/

Variant Structure Prediction with AlphaFold2

- Three variants were ultimately refined: mut2B-W, mut2C-W, and mut2C-WF
- We will use AlphaFold2 to predict the structure of mut2C-WF

Cas12a

protein

AA sequence of mut2C-WF

F863V,	F884L,	W890A,
D952N,	C965Y,	V1011A,
Q1108L,	A1113V,	S1132T,
S1214P		

>5XUS_1|Chain A|LbCpf1_mut2cwf|Lachnospiraceae bacterium ND2006 (1410628) MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAF KGNEGYKSLFKKDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVED FFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKN FDEYSSAGIFVKNGPAISTISKDIFGEWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQ DADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQ ILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDF FNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVHPANS PIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVIGIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNVNGIRIKTDY HSLLDKKEKERFEARQNWTSIENIKELKAGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLINKLNYMVDKKSNPYATGGALKGYQITNKFE SFKSMSTQNGFIFYIPAWLTSKIDPSTGFANLLKTKYTSIADSKKFISSFDRIMYVPEEDLFEFALDYKNFSR IRIFRNPKKNNVFDWEEVC LTSAYKELFNKYGINYQLGDIRVLLCEQSDKAFYSSFMALMTLMLQMRNSITGRTDVDFLISPVKNSDGIFYD ANGAYNIARKVLWAIGQFK **D952N** KAEDEKLDKVKIAIPNKEWLEYAQTSVKH

Running Alphafold2

Hardware Requirements

GPU: It requires NVIDIA GPUs with CUDA support, and for optimal performance, it's recommended to use a high-performance GPU such as the NVIDIA A100, V100, or at least a T4 or RTX 2080 Ti for smaller proteins.

CPU: A modern multi-core CPU (e.g., 8 cores or more) is important for efficient data processing.

Memory (RAM): The amount of system memory required can vary. For predicting structures of individual proteins (monomers), at least 16 GB of RAM is recommended, but 32 GB or more may be required for larger proteins or for multimer predictions.

Computational Time

The time it takes to run a prediction can vary from a few hours to several days, depending on:

- The complexity of the protein or protein complex.
- The model_preset used (monomer vs. multimer).
- The performance of the hardware, especially the GPU.

Accessing AlphaFold2 on Tufts HPC

• Command Line Interface (CLI)

Open
 OnDemand

<pre>xli37@login-prod-01:~>module</pre>	load	alphafold/2.3.2
xli37@login-prod-01:~>		

			open OnI	Demand	
og in with your HPC username and password.					
og in with your HPC username and password.	OPEN	DnDe	mar	nd	
ssword	Username				
ssword					
	Password				
		OrDernard			
og in to Open OnDemand	Log in to Ope	OnDemand			

Run AlphaFold2 on Tufts HPC

Example script is provided

/cluster/tufts/bio/tools/training/cas12a_af2_sp24/script/runaf.sh

#!/bin/bash
#SBATCH -p gpu
#SBATCH -n 8
#SBATCH -n mm=64g
#SBATCH --time=2-0
#SBATCH -o output.%j
#SBATCH -o output.%j
#SBATCH -N 1
#SBATCH -N 1

Load the AlphaFold2 and NVIDIA modules
module load alphafold/2.3.2
nvidia-smi

Make the results directories
mkdir /cluster/home/xli37/cas12a_af2_sp24/out/

```
# Specify where your output directories and raw data are
outputpath1=/cluster/home/xli37/cas12a_af2_sp24/out/
fastapath=/cluster/home/xli37/cas12a_af2_sp24/5XUS_mut2cwf_modified.fasta
```

```
# Date to specify if you want to avoid using template
maxtemplatedate1=2020-01-01
```

run_alphafold.sh --output_dir=\$outputpath1 \ --fasta_paths=\$fastapath \ --max template date=\$maxtemplatedate1 \ --model_preset=multimer \ --models to relax=best \ --data_dir=/cluster/tufts/biocontainers/datasets/alphafold/db_20231031/ --uniref90_database_path=/cluster/tufts/biocontainers/datasets/alphafold/db_20231031/uniref90/uniref90.fasta --mgnify_database_path=/cluster/tufts/biocontainers/datasets/alphafold/db_20231031/mgnify/mgy_clusters_2022_05.fa --pdb_segres_database_path=/cluster/tufts/biocontainers/datasets/alphafold/db_20231031/pdb_segres/pdb_segres.txt --template_mmcif_dir=/cluster/tufts/biocontainers/datasets/alphafold/db_20231031/pdb_mmcif_mmcif_files \ --max_template_date=2022-01-01 \ --obsolete_pdbs_path=/cluster/tufts/biocontainers/datasets/alphafold/db_20231031/pdb_mmcif/obsolete.dat --use_gpu_relax=True \ --bfd_database_path=/cluster/tufts/biocontainers/datasets/alphafold/db_20231031/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt --uniref30 database path=/cluster/tufts/biocontainers/datasets/alphafold/db 20231031/uniref30/UniRef30 2021 03 --uniprot_database_path=/cluster/tufts/biocontainers/datasets/alphafold/db_20231031/uniprot/uniprot.fasta

Running AlphaFold2 with Open OnDemand

https://ondemand.pax.tufts.edu

Open OnDemand Files - Jobs - Clusters - Interactive Apps -	Bioinformatics Apps - Misc - 🗇
	Apps
Upcoming Workshops	🔊 AlphaFold
Data Carpentry Workshop	CellProfiler AlphaFold
 Date: February 12-15, 2024 	€ FastQC
 Time: 1:00pm - 4:00pm 	🛶 QualiMap
Registration: HERE	- RELION
	RStudio for scRNA-Seq
	is Shinyngs
NOTIFICATIONS and SUPPORT REQUEST	

AlphaFold

This app will launch AlphaFold. More information about AlphaFold can be found here (https://github.com/deepmind/alphafold).

Number of hours

24	
Number of cores	Numbers can be changed based on the size of your protein
8	

Amount of memory

32GB	~
Select preempt or normal gpu partition	NOTE: jobs submitted to the preempt partition may get automatically killed
gpu	to allow higher priority jobs to run

NOTE: jobs submitted to the preempt partition may get automatically killed to allow higher priority jobs to run

Select the GPU type

a100

Software Version

2.3.2

Database

20231031

Working Directory Change it to your own working directory

/cluster/home/tutln02/cas12a_af2_sp24/

Select your project directory; defaults to \$HOME

Output directory Name

/cluster/home/tutln02/cas12a_af2_sp24/ Change it to your own output directory

Where the results will be going to (relative to the working directory field

above). Example: alphafold.out

fasta_paths

Input file. Fasta format.

 \sim

/cluster/home/tutln02/cas12a_af2_sp24/5XUS_mut2cwf_modified.fasta

The fasta files containing amino acid sequence(s) to fold. If there are more multiple files, please separate them using comma(e.g. seq1.fasta,seq2.fasta)

model_preset	Let's use multimer for now
multimer	~

Select to run the monomer or multimer model for sequences.

models_to_relax

best

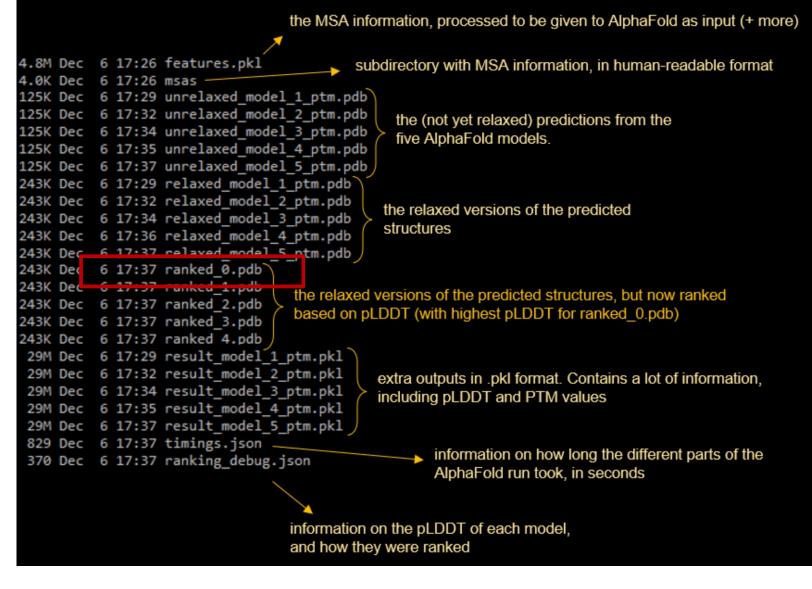
~

After generating the predicted model, AlphaFold runs a relaxation step to improve local geometry. By default, only the best model (by pLDDT) is relaxed (--models_to_relax=best), but also all of the models (--models_to_relax=all) or none of the models (--models_to_relax=none) can be relaxed.

num_multimer_predictions_per_model

1

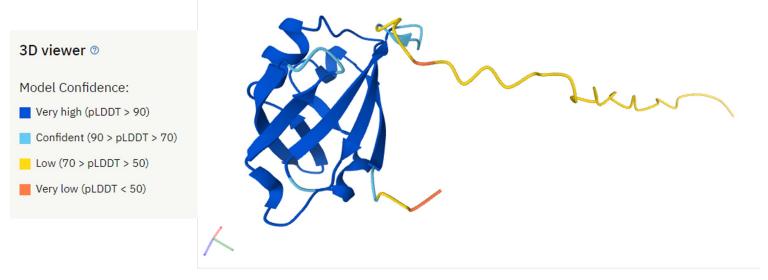
How many predictions (each with a different random seed) will be generated per model. E.g. if this is 2 and there are 5 models then there will be 10 predictions per input. Note: this FLAG only applies if model_preset=multimer. (default: 5).


max_template_date	This parameter is crucial for benchmarking and studies, ensuring predictions replicate original conditions without using future	
2020-01-01	knowledge unavailable at the study time.	
Maximum template release date to c	It can be any past date.	
DD).Important if folding historical tes		
Extra parameters	This date acts as a cutoff, meaning that only protein templates solved on or before this date will be considered during the structure prediction process.	

Extra parameters to use. Multiple space-separated parameters can be used.

Launch

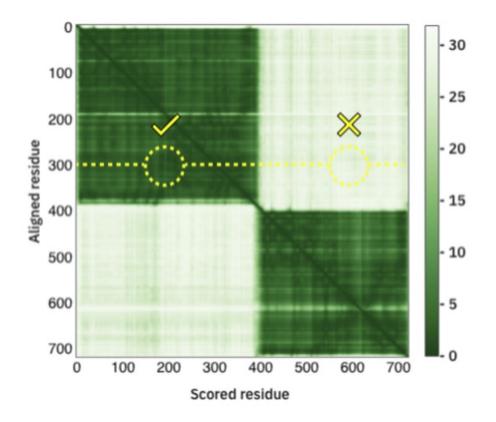
* The AlphaFold session data for this session can be accessed under the data root directory.


Output

https://elearning.vib.be/courses/alphafold/lessons/alphafold-on-the-hpc/topic/alphafold-outputs/

AlphaFold2 Accuracy

Predicted Local Distance Difference Test


- The Predicted Local Distance Difference Test (pLDDT) is a per-residue confidence metric ranging from 0-100 (100 being the highest confidence)
- Regions below 50 could indicate disordered regions

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825149/

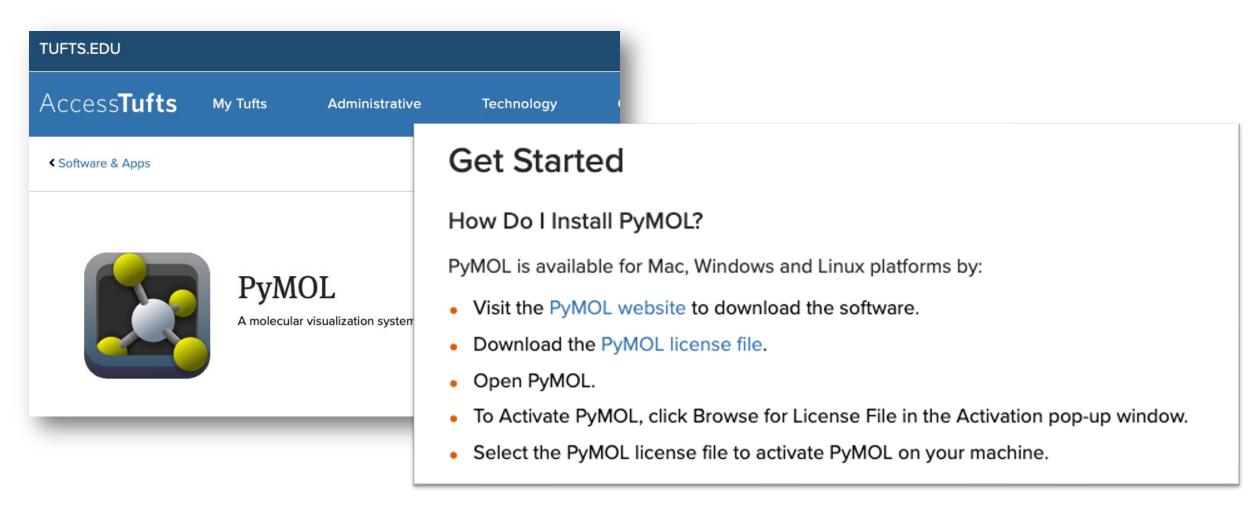
AlphaFold2 Accuracy

Predicted Alignment Error

- The Predicted Alignment Error (PAE) gives us an expected distance error based on each residue.
- If we are more confident that the distance between two residues is accurate, then the PAE is lower (darken green). If we are less confident that th distance between two residues is accurate, the PAE is higher (lighter green)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825149/

Github page for AlphaFold


\equiv \bigcirc google-deepmind / alphafe	old Q T	ype 🕖 to search
<> Code ③ Issues 211 \$ Pull	requests 23 🕑 Action	ns 田 Projects ! Security
우 main 👻 당	Q Go to file	t + <> Code -
Htomlinson14 and Copybara-S	ervice U 🚥 🗸 032e2f2 ·	3 weeks ago 🕚 137 Commits
afdb	Release code for v2.3.0	2 years ago
alphafold	Loosen overly tight nume	rical toler 3 months ago
docker	Update conda to 24.1.2.	3 weeks ago

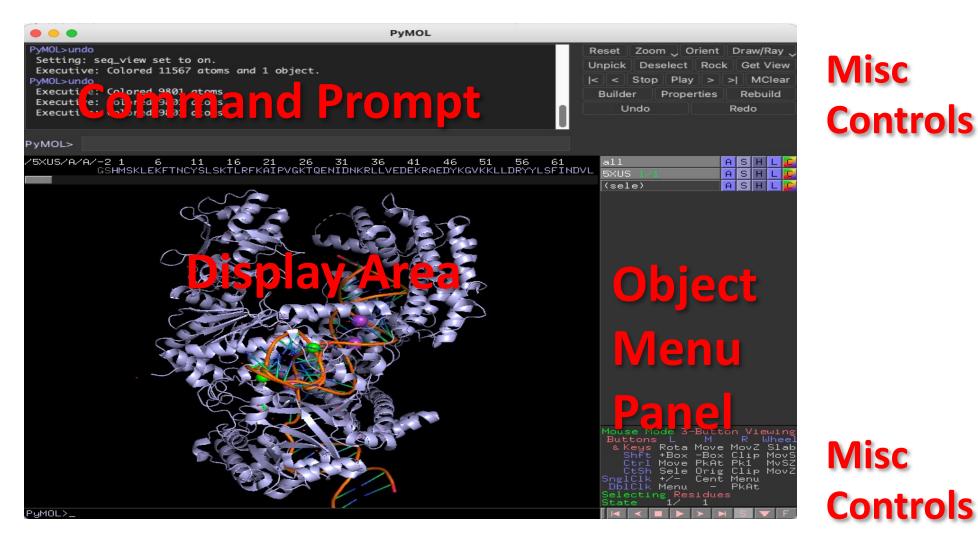
https://github.com/google-deepmind/alphafold/?tab=readme-ov-file#running-alphafold

04. PyMOL: Visualizing Protein Structures

Pymol is accessible for free with Tufts credentials

https://access.tufts.edu/pymol

PyMOL


https://www.rcac.purdue.edu/files/training/AlphaFol d_Protein_Structure_Prediction.pdf

Molecular visualization software

- Given atomic coordinate or volumetric data
- X-ray, NMR, EM, AlphaFold, etc.
- Generates an interactive visualization
- Can render and save publication-quality images and videos.

PyMOL

https://www.rcac.purdue.edu/files/training/AlphaFol d Protein Structure Prediction.pdf

Pymol Reference Card

Pymol Reference Card

Modes

Pymol supports two modes of input: point and click mode, and command line mode. The point and click allows you to quickly rotate the molecule(s) zoom in and out and change the clipping planes. The command line mode where commands are entered into the external GUI window supports all of the commands in the point and click mode, but is more flexible and possibly useful for complex selection and command issuing. Commands entered on the command line are executed when you press the return key. command help help keyword

Pymol Reference Card

ray

rav 2000.2000

ray 5000,5000

viewport 640,480

set ray_shadow,0

set depth_cue.0

set antialias.1

png image.png

Pymol Reference Card

Modes

Pymol supports two modes of input: point and click mode, and command line mode. The point and click allows you to quickly rotate the molecule(s) zoom in and out and change the clipping planes. The command line mode where commands are entered into the external GUI window supports all of the commands in the point and click mode, but is more flexible and possibly useful for complex selection and command issuing. Commands entered on the command line are executed when you press the return key. command help help keyword

Loading Files

file loading	load data/test/pept.pdb
loading from terminal	pymol data/test/pept.pdb
toggle between text and grap	hics Esc
toggle Y axis rocking	rock
stereo view	stereo on/off
stereo type stereo crosse	ye / walleye / quadbuffer
undo action	undo
reset view	reset
reinitialize Pymol	reinitialize
quit (force, even if unsaved)	quit

Mouse Control

	L Rota	M Move	R MovZ	Wheel Slab	
Shift	+Box	-Box	Clip	MovS	
Ctrl	+/-	PkAt	Pk1		
CtSh	Sele	Cent	Menu		
DblClk	Menu	Cent	PkAt		
set the cer	nter of ro	otation		origin	selection

Atom Selection

object-name/seqi-id/chain-id/resi-id/name-id

```
molecular system selection
                                               /pept
molecule selection
                                           /pept/lig
chain selection
                                        /pept/lig/a
residue selection
                                     /pept/lig/a/10
atom
                                  /pept/lig/a/10/ca limit colour to ss
ranges
                                     lig/a/10-12/ca
                                           a/6+8/c+o cartoon loop
ranges
missing selections
                                           /pept//a
naming a selection
                           select bb, name c+o+n+ca
count atoms in a selection
                                     count_atoms bb
remove atoms from a selection
                                      remove resi 5
general all, none, hydro, hetatm, visible, present cartoon arrow
atoms not in a selection
                           select sidechains, ! bb cartoon dumbell
atoms with a vdW gap < 3 Å
                                    resi 6 around 3 b-factor sausage
atom centers with a gap < 1.0 Å all near 1 of resi 6
atom centers within < 4.0 Å all within 4 of resi 6
```

Basic Commands

Some commands used with atoms selections. If you are low resolution unsure about the selection, click on the molecule part that you want in the viewing window and then look at the output line to see the selection.

fill viewer with selection zoom /pept//a center a selection center /pept//a colour a selection colour pink, /pept//a force Pymol to reapply colours recolor set background colour bg_color white vdW representation of selection show spheres, 156/ca stick representation of selection show sticks, a// line representation of selection show lines, /pept ribbon representation of selection show ribbon, /pept dot representation of selection show dots, /pept mesh representation of selection show mesh, /pept surface representation of selection show surface, /pept nonbonded representation of selection show nonbonded, /pept nonbonded sphere representation of selection show nb_spheres, /pept cartoon representation of selection show cartoon, a// clear all hide all rotate a selection rotate axis, angle, selection translate a selection translate [x,y,z], selection

Cartoon Settings

Setting the value at the end to 0 forces the secondary structure to go though the CA position. cylindrical helices set cartoon_cylindrical_helices,1 fancy helices [tubular edge] set cartoon_fancy_helices,1 flat sheets set cartoon_flat_sheets,1 smooth loops set cartoon_smooth_loops,1 find rings for cartoon cartoon_ring_finder, [1,2,3,4] ring mode set cartoon_ring_mode,[nucleic acid mode set nucleic_acid_mode, [0,1, cartoon sidechains set cartoon_side_chain_h rebuild primary colour set cartoon_colo: secondary colour set cartoon_highlight_color set cartoon_discrete_col cartoon transparency set cartoon_transparen cartoon loo cartoon loop cartoon loo cartoon rectangular cartoon rec cartoon oval cartoon ova cartoon tubular cartoon tub cartoon arro

Image Output

high resolution ultra-high resolution change the default size [pts] image shadow control image fog control set ray_trace_fog,0 image depth cue control image antialiasing control export image as .png

Hvdrogen Bonding

Draw bonds between atoms and label the residues that are involved.

draw a line between atoms	distance 542/oe1,538/ne		
set the line dash gap	set dash_gap,0.09		
set the line dash width	set dash_width,3.0		
set the line dash radius	set dash_radius,0.0		
set the line dash length	set dash_length,0.15		
set round dash ends	set dash_round_ends, on		
hide a label	hide labels, dist01		
label a reside label	(542/oe1), "%s" %("E542")		
set label font	set label_font_id,4		
set label colour	<pre>set label_color,white</pre>		

Electrostatics

There are a number of ways to apply electrostatics in Pymol. The user can use GRASP to generate a map and then import it. Alternatively the user can use the APBS Pymol plugin. Pymol also has a built in function that is quick and dirty.

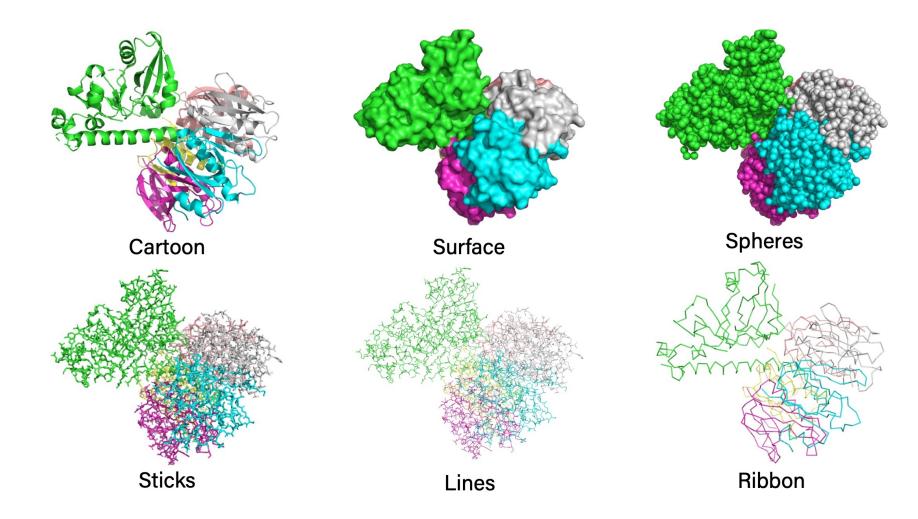
generate electrostatic surface action > generate>vacuum electrostatics > protein contact potential

Pymol Movies (mac)

set	move the camera move x,10
100 000 _000 000 000	turn the camera turn x,90
on_ring_mode,[1,2,3]	play the movie mplay
id_mode,[0,1,2,3,4]	stop the movie mstop
n_side_chain_helper;	writeout png files mpng prefix [, first [, last]]
	show a particular frame frame number
cartoon_color,blue	move forward on frame forward
ighlight_color,grey	move back one frame backwards
n_discrete_colors,on	go to the start of the movie rewind
on_transparency,0.5	go to the middle of the movie middle
cartoon loop, a//	go to the movie end ending
cartoon loop, a//	determine the current frame get_frame
cartoon rect, a//	clear the movie cache mclear
cartoon oval, a//	execute a command in a frame mdo 1, turn x,5; turn
cartoon tube, a//	v,5;
cartoon arrow, a//	dump current movie commands mdump
artoon dumbell, a//	
cartoon putty, a//	reset the number of frames per second meter_reset

Tufts University | Bioengineering | ChBE165 | Medford Campus

cartoon dumbel


Loading Data

https://www.rcac.purdue.edu/files/training/AlphaFol d_Protein_Structure_Prediction.pdf

PyMOL handles PDB, mmCIF, MRC, SITUS, etc

- Can open files on your computer
 - File \rightarrow Open
 - load <path to file>
- Can download directly from PDB
 - File \rightarrow Get PDB
 - fetch <PDB code>

Representations for Atomic Coordinate Data

https://www.rcac.purdue.edu/files/training/AlphaFold_Protein_Structure_Prediction.pdf

For those without access to an HPC account

Research Technology

The Research Technology (RT) team provides tools, training, and support for Tufts researchers, faculty, staff, and students across disciplines. Tufts Research Technology supports a wide range of online and downloadable applications for research. Consultation areas include Data Strategy, Statistical consulting, Bioinformatics consulting, GIS consulting and more.

https://it.tufts.edu/researchtechnology.tufts.edu

Hands-on tutorial 2024 Spring Latest version

https://go.tufts.edu/chbe0165_af

Hands-on session 1: Run AlphaFold2 on Tufts HPC with Open OnDemand App

https://github.com/tuftsdatalab/tuftsWorkshops/blob/main/docs/2024_workshops/cas12aAlphaFold2 sp24/02_Run_AlphaFold2_OpenOndemandApp.md

Hands-on session 2: Visualize alphafold2 predicted structure with PYMOL

https://github.com/tuftsdatalab/tuftsWorkshops/blob/main/docs/2024_workshops/cas12aAlphaFold2 _sp24/03_Vizualize_predicted_structure_with_PYMOL.md

Hands-on tutorial, 2023 Spring: Content developed by Jason Larid, former bioinformatics scientist.

https://github.com/tuftsdatalab/tuftsWorkshops/tree/main/docs/20 23_workshops/cas12aAlphaFold2

References

https://www.sciencedirect.com/science/article/pii/S2319417019305050

https://www.yourgenome.org/facts/what-is-crispr-cas9/

https://www.nature.com/articles/emm2016111

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825149/

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-235

https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/

https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

https://www.nature.com/articles/s41586-021-03819-2

https://www.uniprot.org/help/uniref

https://www.rcsb.org/

https://alphafold.ebi.ac.uk/faq

https://alphafold.com/entry/Q9FX77

https://www.rcsb.org/3d-view/5XUS/1

https://pymol.org/2/

https://github.com/google-deepmind/alphafold/tree/main

https://hpc.nih.gov/apps/alphafold2.html